彩票网-捕鱼_百家乐软件_全讯网1 (中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

學術預告—An efficient second-order linear scheme for the phase field model of corrosive dissolution
作者:     日期:2019-12-04     來源:    

講座主題:An efficient second-order linear scheme for the phase field model of corrosive dissolution

主持人:李宏偉

工作單位:山東師范大學

講座時間:2019年12月7日(周六)下午16:10--16:50

講座地點:數學院341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

We propose an efficient numerical scheme for solving the phase field model (PFM) of corrosive dissolution that is linear and second-order accurate in both time and space. The PFM of corrosion is based on the gradient flow of a free energy functional depending on a phase field variable and a single concentration variable. While classic backward differentiation formula (BDF) schemes have been used for time discretization in the literature, they require very small time step sizes owing to the strong numerical stiffness and nonlinearity of the parabolic partial differential equation (PDE) system defining the PFM. Based on the observation that the governing equation corresponding to the phase field variable is very stiff due to the reaction term, the key idea of this paper is to employ an exponential time integrator that is more effective for stiff dynamic PDEs. By combining the exponential integrator based Rosenbrock--Euler scheme with the classic Crank--Nicolson scheme for temporal integration of the spatially semi-discretized system, we develop a decoupled linear numerical scheme that alleviates the time step size restriction due to high stiffness. Several numerical examples are presented to demonstrate accuracy, efficiency and robustness of the proposed scheme in two-dimensions, and we find that a time step size of $10^{-3}$ second for meshes with the typical spatial resolution $1~\mu$m is stable. Additionally, the proposed scheme is robust and does not suffer from any convergence issues often encountered by nonlinear Newton methods.

主講人介紹:

山東師范大學數學與統計學院副教授,碩士生導師。2012年獲香港浸會大學博士學位,2016-2017年獲國家留學基金委資助赴美國南卡羅來納大學進行學術交流。目前主要從事相場模型和無界區域上偏微分方程數值解法的研究工作。近年來先后主持國家自然科學基金、山東省自然科學基金3項,在J. Sci. Comput., Phys. Review E等雜志上發表論文多篇。

百佬汇百家乐的玩法技巧和规则| 百家乐真人博彩的玩法技巧和规则| 千亿娱百家乐的玩法技巧和规则| 百家乐打印机分析| 百家乐博彩桌出租| 百家乐是个什么样的游戏| 金宝博娱乐城返水| 利来百家乐官网娱乐| 大连娱网棋牌下载| 百家乐官网投注综合分析法| 百家乐哪家信誉好| 定兴县| 24山向| 百家乐官网投注组合| 土豪百家乐的玩法技巧和规则| A8百家乐官网娱乐城| 互博百家乐的玩法技巧和规则| 德州扑克保险| 百家乐信誉好的平台| 大发888下载客户端| 娱乐百家乐官网下载| 德安县| 百家乐翻天粤| 百家乐官网群sun811.com| 娱乐城百家乐可以代理吗 | 网上百家乐官网有人赢过嘛| 怎样看百家乐路纸| 百家乐官网技论坛| 德州扑克网站| 网上百家乐必赢玩| 金城百家乐官网买卖路| 凤冈县| 全讯网官网| 百家乐官网发牌盒子| 网络老虎机| 百家乐官网tt赌场娱乐网规则 | 百家乐庄闲路| 网上百家乐官网真钱游戏| 至尊百家乐官网奇热| 黎城县| 游艇会娱乐城|