彩票网-捕鱼_百家乐软件_全讯网1 (中国)·官方网站

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“兩校名師講堂”學術預告263—Mixed Finite Element Methods of Elasticity Problems
作者:     日期:2018-11-14     來源:    

講座主題:Mixed Finite Element Methods of Elasticity Problems

專家姓名:胡俊

工作單位:北京大學

講座時間:2018年11月16日17時0分

講座地點:數學學院340

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

The problems that are most frequently solved in scientific and engineering computing may probably be the elasticity equations. The finite element method (FEM) was invented in analyzing the stress of the elastic structures in the 1950s. The mixed FEM within the Hellinger-Reissner (H-R) principle for elasticity yields a direct stress approximation since it takes both the stress and displacement as an independent variable. The mixed FEM can be free of locking for nearly incompressible materials, and be applied to plastic materials, and approximate both the equilibrium and traction boundary conditions more accurate. However, the symmetry of the stress plus the stability conditions make the design of the mixed FEM for elasticity surprisingly hard. In fact, ``Four decades of searching for mixed finite elements for elasticity beginning in the 1960s did not yield any stable elements with polynomial shape functions" [D. N. Arnold, Proceedings of the ICM, Vol. I : Plenary Lectures and Ceremonies (2002)]. Since the 1960s, many mathematicians have worked on this problem but compromised to weakly symmetric elements, or composite elements. In 2002, using the elasticity complexes, Arnold and Winther designed the first family of symmetric mixed elements with polynomial shape functions on triangular grids in 2D.

The talk presents a new framework to design and analyze the mixed FEM of elasticity problems, which yields optimal symmetric mixed FEMs. In addition, those elements are very easy to implement since their basis functions, based on those of the scalar Lagrange elements, can been explicitly written down by hand. The main ingredients of this framework are a structure of the discrete stress space on both simplicial and product grids, two basic algebraic results, and a two-step stability analysis method.

主講人介紹:

胡俊, 北京大學數學科學學院教授、黨委書記, 國家杰出青年基金獲得者。 主要從事非標準有限元方法,特別是彈性力學問題及相關問題的非標準有限元方法的構造、數值分析及自適應有限元方法等方面的研究。發表相關領域的論文60余篇,曾獲中國計算數學學會的“首屆青年創新獎”,全國百篇優秀博士學位論文和德國洪堡研究獎學金等榮譽。 現任三個國際期刊的編委和北京計算數學學會理事長。

时尚| 德州扑克 单机| 百家乐游戏客户端| 百家乐博娱乐场| 百家乐官网娱乐开户| 网上现金游戏网 | 百家乐官网管家| 找真人百家乐官网的玩法技巧和规则 | 百家乐路单| 789棋牌游戏| 百家乐棋牌技巧| 百家乐官网游戏发展| 百家乐和局投注法| 百家乐官网技巧-百家乐官网开户指定代理网址 | 百家乐官网娱乐用品| 利博百家乐破解| 百家乐官网上海代理| 大发888-大发娱乐城| 百家乐平投注法| 足球百家乐官网投注计算| 威尼斯人娱乐城博彩投注平台| 百家乐官网赌机破解| 大发888备用网址| 百家乐平玩法几副牌| 至尊百家乐规则| 龙州县| 威尼斯人娱乐城好玩吗| 百家乐官网桌子定制| 百家乐官网必胜| 德州扑克排名| 赌博百家乐玩法| CEO百家乐官网娱乐城| 百家乐官网真钱路怎么看| 威尼斯人娱乐城送宝马| 百家乐娱乐城7| 百家乐官网荷官培训| 博联百家乐官网游戏| 金逸太阳城团购| 百家乐赢多少该止赢| 网络百家乐骗局| 百家乐官网网址官网|